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Boolean delay equations (BDEs) are evolution equations for a vector of discrete 
variables x(t). The value of each component xt(t), 0 or 1, depends on previous 
values of all components X j ( t -  tiff, x~(t) = f , ( x l ( t -  til),..., x n ( t -  tin)). BDEs 
model the evolution of biological and physical systems with threshold behavior 
and nonlinear feedbacks. The delays model distinct interaction times between 
pairs of variables. In this paper, BDEs are studied by algebraic, analytic, and 
numerical methods. It is shown that solutions depend continuously on the initial 
data and on the delays. BDEs are classified into conservative and dissipative. All 
BDEs with rational delays only have periodic solutions only. But conservative 
BDEs with rationally unrelated delays have aperiodic solutions of increasing 
complexity. These solutions can be approximated arbitrarily well by periodic 
solutions of increasing period. Self-similarity and intermittency of aperiodic 
solutions is studied as a function of delay values, and certain number-theoretic 
questions related to resonances and diophantine approximation are raised. 
Period length is shown to be a lower semicontinuous function of the delays for a 
given BDE, and can be evaluated explicitly for linear equations. We prove that 
a BDE is structurable stable if and only if it has eventually periodic solutions of 
bounded period, and if the length of initial transients is bounded. It is shown 
that, for dissipative BDEs, asymptotic solution behavior is typically governed 
by a reduced BDE. Applications to climate dynamics and other problems are 
outlined. 
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1. I N T R O D U C T I O N  

In certain physical, as well as biological, systems interactions between state 
variables are highly nonlinear. For some of these systems, critical thresholds 
can be associated with the levels of interaction, as well as with the variables 
themselves. One may then describe the state of the system using a vector of 
Boolean variables, i.e., variables which take only the values 0 and l. The 
interactions will be described by Boolean-valued functions of these Boolean 
variables. A variable with k>~2 discrete levels can be reexpressed by at 
most k -  1 Boolean variables. 

In the framework we envisage, the action of one Boolean state variable 
upon another is associated with a certain delay, representing the time it 
takes in the real-life system for the action to attain a critical threshold. 
Thus one is led to consider evolution equations for a vector of Boolean 
variables, with each variable depending upon the value of each of the other 
variables at some previous time; this past time depends upon the pair of 
variables acting and acted upon, respectively. 

In molecular biology, the idea of thresholds and of a Boolean descrip- 
tion was first formulated by Jacob and Monod./1) Sugita I2) and 
Kauffman (3) formulated simple models with a single delay. The theory of 
cellular automata (4-6) and conservative logic (7'a) represent systematic 
generalizations of these ideas and models. Thomas (9'~~ introduced multiple 
delays associated with the different time scales of action, and further expan- 
ded the theory. 

In a typical example from genetic control theory, a set of interacting 
genes show a strong threshold behavior: a gene is "on" or "off." If a gene is 
"on," it produces a product which, in combination with the presence or 
absence of other gene products, can change the state of other genes. 
Furthermore, it takes a certain amount of time, i.e., a certain delay, before 
a gene product exists in sufficient quantity to have an effect on any other 
gene. The length of the delay depends upon the producing gene, as well as 
the affected gene. 

Similar examples from population biology, 
tronic circuit theory are easy to construct. We 
from theoretical climate dynamics. (11'12) An 

chemical kinetics and elec- 
give one more illustration 
elementary self-oscillatory 

model of quaternary glaciation cycles has two variables: global, annually 
averaged temperature T and ice volume V. T decreases as V increases, 
owing to the reduction in solar radiation absorbed by the system (the ice- 
albedo effect), while V decreases when T decreases, owing to the reduction 
of snow accumulation caused by a less active hydrological cycle (the 
precipitation-temperature effect). Again, the action of each effect men- 
tioned above is associated with certain delays. These delays are distinct, 
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being due either to the ocean's heat capacity or to the slow, viscoplastic 
flow of ice sheets, and are of the order of thousands of years each. 

The mathematical framework of Boolean delay equations (BDEs), as 
discussed here, was introduced by Dee and Ghil (13~ (hereafter BDE I). The 
initial-value problem of forward evolution was formulated, and proven to 
possess unique solutions for all times. Existence in the large required the 
evaluation of a certain bound on the complexity of solutions, which 
depends on the number of distinct delays. Continuous dependence on 
initial data and structural stability for BDEs were also introduced and dis- 
cussed. Furthermore, a numerical example of BDE was given which 
exhibits aperiodic solutions of increasing complexity for certain delay 
values. This example motivated much of the work to be described here. 

The purpose of the present paper is to continue the investigation of this 
class of equations started in BDE I. In Section 2, a group action on 
solutions is introduced. We show that BDEs which have only rational 
delays lead to solutions which are eventually periodic. BDEs are then 
classified in two ways: linear and nonlinear, and conservative and dis- 
sipative. 

In Section 3, the jump function is introduced to count the number of 
jumps in a solution up to a certain time. An upper bound for the growth of 
this jump function was used in BDE l to prove existence in the large. A 
lower bound is obtained here to show that conservative BDEs with 
irrational delays have aperiodic solutions with growing complexity. 

Section 4 contains an approximation theorem ~ for solutions of BDEs. 
This theorem permits the numerical approximation of solutions and their 
jump functions using rational delays only. The self-similar behavior of 
solutions and their jump functions is exhibited and discussed. In Section 5, 
periodic solutions are examined more closely. Upper bounds for period 
length are computed explicitly for linear and nonlinear equations. 

Dissipative BDEs are studied in Section 6. The connection between 
periodicity and structural stability is indicated. Asymptotic stability of 
solutions and nontrivial attractor sets are discussed. 

Concluding remarks follow in Section 7. Possible applications and 
generalizations are outlined. Additional details on many aspects of BDEs 
can be found in Mullhaupt (14/ (referred to subsequently as AM) and, for 
the sake of brevity, are not repeated here. In particular, two appendices in 
AM present: (a)the numerical methods used to compute solutions, their- 
jump functions and their periods and (b) continued fractions and their use 
in approximating irrational delays. Many proofs will be abridged or omit- 
ted entirely here, and the interested reader is referred to AM. 

822/41/1 2 9 
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2. BOOLEAN DELAY EQUATIONS AND 
THEIR CLASSIFICATION 

2.1. Boolean Delay Equations (BDEs) 

A general system of delay equations for a vector x = (x1,..., x , )  is a set 
of equations 

Xl(t) = L(x~( t -  tl~),..., xn( t -  t~,)) 
: : (2.1) 

x,( t )  = L ( x l ( t -  [nl ) ..... X n ( t -  tnn)) 

where xi: ~ ~ S, f,.: S n--, S, and S is some topological space. One nor- 
malizes the delays t,j to be in the interval (0, 1 ] and so that the largest one 
actually has unit value. Throughout  this paper, we shall consider only 
autonomous, or closed, systems, with no explicit time dependence. 

To study first the initial-value problem, one gives values in S n for x(t) 
on t e [0, 1 ] and determines all possible continuations for t > 1 consistent 
with (2.1) and with the initial data. A unique function x(t) is determined 
that solves this problem, subject to certain conditions, and one wishes to 
study the qualitative dependence of this unique solution on the properties 
of the initial data, and on the delays. One is led to consider in general 
spaces of initial data compatible with the required properties of solutions 
(AM). Defining the space Sn[0, 1 ] to be the space of Sn-valued compatible 
initial data, an endomorphism ~ .  acts on this space 

~-: S"[0, 1]---, Sn[0, 1] (2.2a) 

J)f: x [ In,n+ 13 F-~ x [E,~+ 1,n+23 (2.2b) 

where x(t) is a solution to the delay equation (2.1). 
The discrete-variable case S =  B = {0, 1 } is of interest in studying 

highly nonlinear systems which behave in a saturated manner, exhibiting 
finitely many recognizable states. The variables, as well as time, are also 
discretized in cellular automata theory, ~ kinetic logic, ~9'1~ and conser- 
vative logic. ~8) As we shall see, a richer theory emerges by allowing time to 
remain continuous. The "synchronized" case of discrete time finds its place 
in a very natural way within this theory. The fact that synchronization can 
be of utmost importance in determining the dynamic behavior is one of the 
main points of this section. 

In the discrete topology on arbitrary S, the only continuous functions 
x: [0, 1 ] ~ S n are constants, since [-0, 1 ] is connected. It is for this reason 
that piecewise continuous, i.e., piecewise constant, functions seem 
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appropriate for our purposes. Given the discrete topology on any S, the 
only discontinuities are jumps between the discrete values of x(t). The 
number of jumps in the initial data is finite by the definition of piecewise 
continuity. 

Jumps in the solution for t > 1 may only occur on a set of times given 
by translates of the initial jump times, through integral combinations of 
delays. This set was shown in BDE I to have no accumulation points. Thus 
the number of jumps in any finite interval is finite. 

Changing the point of view from (2.1) to (2.2), S ' [0 ,  1] is the phase 
space on which Jjf acts. The number of jumps J f  in any iterate of the initial 
data under (2.2b) is finite. Thus Jr: Sn[0, 1] ~ N is an integer-valued phase 
function. 

In the Boolean case, S = B - { 0 ,  1} and 5- acts on ~"[0, 1]. The 
proper topology is defined by the L 1 metric on ~1[0, 1], i.e., 

,i {x(t)Vy(t)} dt = I x ( t ) -  y(t)l  dt (2.3) d(x, y)  -- Jo 

where "V" is the "exclusive or," pVq = (p A El) v (~ /x q), with /~ = notp,  
and the second integral refers to x and y as real-valued functions. 

In this topology 5- is continuous, but not Lipschitz continuous. In 
fact, the Lipschitz constant for 5- is just the jump function max{J[x( t ) ] ,  
J [y ( t ) ]} ,  which is not bounded on B"[0, 1]. Henceforth B~[0, 1] equip- 

ped with the Boolean algebra and Ll-induced product topology is our 
phase space and will be denoted by X. 

T h e o r e m  2.1. Y:  Jr--, X is continuous for given delays. 

Proof. See AM. 

T h e o r e m  2.2. 5-: X x [0, 1 ]'2 ~ X x  [0, 1 ],2 is continuous, where 
[0, 1] "2 is the space of delays in the usual topology. 

2.2. Ra t iona l  Delays 

We are ready to consider the asymptotic behavior of the dynamical 
system y-k as k ~ oo. The case of all delays being rational is the easiest. 

T h e o r e m  2.3. All the solutions of BDEs having only rational 
delays are eventually periodic. 

Rornork. The result holds for arbitrary initial data, including those 
with jumps at irrational points in [0, 1] (see also the proof of 
Theorem 5.3). 
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ProoL Let q be the least common denominator (1.c.d.) of the delays, 
and define x,,  

xr : x I[(r- 1)/q,r/q] (2.4) 

so that the set {xl,..., Xq} are the initial data. Define recursively ~bk by 

and so on, 

xq+~ = r x~) 

Xq+ 2 = ~bl(X2,..., xq, ~bl(xl,... , qq)) 

= CR(X1 ,..., Xq) 

xq+k = ~b~(xl ,..., xq) (2.5) 

There are finitely many choices, say K, for ~bk, so in the sequence 
{~bk, k = 1, 2, 3,... } a "word" of length q must repeat. This word has length 
1 in time and it determines uniquely the solution for all future time. The 
fact that the word repeats in its own continuation means that it must 
repeat again and again, and that the solution is periodic from the first 
repetition of this word on. �9 

We use the word "periodic" to include solutions which are only 
periodic after an initial transient, and solutions which are eventually con- 
stant. Aperiodic then designates solutions which fail to be constant, 
periodic, or quasiperiodic on any time interval It, oe). 

The definitions (2.4) and (2.5) in the proof above suggest the need to 
consider q-tuples ~ E 7/q and one-parameter families of such tuples, thus 

r(s) = Ix(s), x(s + 1/q),..., x(s + ( q -  1 )/q)] (2.6) 

The parameter is s e [0, l/q) and tuple families will prove to be a useful 
concept in the sequel. 

2.3. Conservat ive BDEs 

In the case of (eventually) periodic solutions, what is the actual length 
of the transient? In certain systems of BDEs, transients are possible, and 
their presence or absence depends on the initial data. In other systems, 
when the delays are rational the periodicity begins immediately, for all 
initial data. We define such systems to form the class of conservative 
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systems, and term all other systems of BDEs dissipative. The simplest non- 
trivial examples of a conservative and a dissipative BDE are 

and 

x(t)  = ~(t - 1) 

x ( t ) = x ( t - 1 )  /x x ( t - O )  

respectively, with 0 < 0 < I. 

De f in i t i on  2.1a.  A system of Boolean delay equations is conser- 
vative for an open set ~ c (0, i ]"2 of delays if for all rational delays in (2 
and all initial data there are no transients. 

Def in i t i on  2.1b.  A transient is an initial state which is only visited 
once in the evolution of the system along a particular orbit in the phase 
space X. 

The initial state in Definitions 2.1a, 2.1b above refers to a reduced 
phase space f e  of initial data for a given BDE with a given set of delays, 
{tu}. Let ei = 1 - supk tki. 

De f in i t i on  2.1c.  The initial subspace Xe of a BDE with delays {t~} 
is defined by the restriction of elements x of J( to intervals [ei, 1 ] for each 
component xi. 

It is common to call a Boolean function f a connective (is) and its 
arguments channels. Thus Definition 2.1c states that we only wish to look 
at the initial data of a channel xi, or i for short, after its earliest appearance 
in determining the subsequent evolution of the system, for t >  1. 
Definition 2.1b states then that it suffices, for the purpose of defining con- 
servative connectives, to consider transients from such restricted initial 
data. 

Linear systems with rational delays. We address now the question of 
which initial data in X, recur in the orbits they generate. In the case of 
rational delays with 1.c.d. q, the space Xe can be represented as a one- 
parameter family of p-tuple spaces 7/f(s); cf. (2.6). Here p, with q ~ p <~ nq 
represents the total number of (1/q)-long segments in the union over the n 
channels of the intervals [e~, 1] in Definition2.1c, and s t [ 0 ,  1/q) as 
before. Ep is a finite-dimensional vector space over Z2, and it is convenient 
sometimes to identify each element r of Z / with an element r ( . )  of EP( ')  
which is constant on each (1/q)-long subinterval, i.e., r'(s) = 0, r(s) - ~. 

The tuple families r ( . )  which generate nontransient states form a sub- 
set Xg of the family 7//(-). The tuple space family Z~(-), r ~< p, associated 
with Xg is invariant under the action of J f  on X, and it is in fact the 
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maximal such invariant subspace of ZP(-). Therefore, we shall call Xg or 
Z~(.) also the limit space. 

We start by studying this subset in the case in which J is a linear map 
on X. In speaking of linearity, we refer to addition (rood 2) in X, so that 

x |  y = x +  y (mod 2 ) = x V y  

cf. (2.3), and will write + for | when confusion is not imminent. Notice 
that x V y =  1 if x #  y and 0 otherwise. Its negation is x A  y =  1 if x =  y 
and 0 otherwise, and 

x A  y = l G x G y  

Thus x V y corresponds to a homogeneous linear map from 7/22 to 2~ 2, and 
x/~ y to an inhomogeneous one. 

is linear iff (if and only if) 

n 

f i=Go+~Co.Xj( t- to) ,  l<~i,j<~n (2.7) 
1 

where c ~  7/2, O<~j<~n. 

I_emma 2.1. Let ~ denote yl/q; cf. (2.5). As a linear map on 2P(.),  
q~ acts invertibly on 2~(. ). 

ProoL See AM. 

maps 7/p(.) into itself, but not necessarily onto, and likewise for 
~(7/p(.)). Successive actions of 45 on 2P( ' )  yield a nested sequence of 
images 

where ~k(7/P)# 4 5k+ 1(7/P) for k ~< l. The string of inclusions above defines 
the number 1 and shows that I/q is the maximum length of transients for 
the map Y = @q. The rank of ~ is thus r, and ~ has J = p -  r zero eigen- 
values. In this case, f will be conservative for a set of delays O iff 
A(f; {to.})=0 for all n2-dimensional vectors of rational delays {tu} in O. 

The dimension p corresponding to Xe can be determined from the set 
{ei} of earliest appearances or, equivalently, from the set {0i} of longest 
delays for each x~, 0 i=supk tki. Given the "cleared-fraction" delays 
Pu = qtij, let the longest ones be/Sz = qO~. The total number of bits in the 
tuple space 77p is p = Y'.7/5~. 
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To find r, the rank of r it is easiest to compute the characteristic 
polynomial of ~r .  (16'17) 

The characteristic polynomial and its degree. First we want to reduce 
the system in order to eliminate the additive constants cio. This 
corresponds to subtracting a particular "inhomogeneous" solution of the 
linear system. It  is convenient to choose this solution, x ~ say, to lie in the 
limit set, x ~ e Z~. All solutions of the full system can be represented as the 
sum of x ~ and of the solutions to the homogeneous system which we now 
study. 

Define the generating function of this system's orbits componentwise 
by 

Gi(z) = ~ xi(k) z k (2.8) 
- - q  

where we denote now xi(k/q) by x~(k), for brevity. By multiplying the linear 
system (2.1), (2.7) by z ~ and summing over k, one can derive an equation 
for the generating function G ( z ) =  (Gi(z)), 

A(z)  G(z) = D(z; %) (2.9a) 

A o = 6~ + c j  p'j (2.9b) 

where ro e 77( is a p-tuple of initial data, and D~(z) are rational functions of 
z. Then 

Q(z) = det A(z)  (2.10) 

is the characteristic polynomial of the matrix q~ for system (2.1), (2.7). 
Solving explicitly for G we have 

Gi(z) = det A]Q(z)  (2.1 la)  

where Ai is the matrix A(z)  with the ith column replaced by D. In the 
scalar case 

G(z) = D(z)/Q(z)  (2.1 lb) 

In fact it is easy to show that the system is reducible to n scalar 
equations, 

y ( t ) = y ( t - - r l ) +  "" + y ( t - - rk )  

with integer delays 0 < r 1 < ...  < r k = q. This can be written as a system, 
with y(t)  = yk(t) and 

y~( t )=y~+~( t -1 ) ,  l<<,i<~q-1 (2.12a) 

q 

yq(t) = ~" b~ yj(t - 1 ) (2.12b) 
1 
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kemma 2.2. The characteristic polynomial of 45 for (2.12) is 

q 

Q(z) = 1 + ~ bjz; (2.13a) 
1 

and the rank r of 45 is the degree of Q(z), 

r = 0Q (2.13b) 

Comparing (2.11a) with (2.11b) shows that the evolution of each 
channel in the system, generated by Gi(z), is given by the same charac- 
teristic polynomial (2.10), and by initial data det Ai(z; ~o) which are just 
linear combinations of the data for the entire system. 

The rank of 45 for the general linear system (2.1), (2.7) is again the 
degree of Q(z), r = •Q, as in (2.13b), while p = Z~/5i. Hence we have the 
following result: 

T h e o r e m  2.4. A linear system of BDEs is conservative for an open 
neighborhood f2 of a fixed n 2 vector of rational, distinct delays {to. } iff 

~,/~i = ~?Q (2 .14)  
i 

for that vector of delays. 

Proof. If the delays t U are all distinct, (2.14) means that the earliest 
appearance of each channel j has to occur in a component i of the connec- 
tive (2.7) different from all the others. Hence, conservativity for linear 
systems depends on the ordering of the delays: an interchange of the largest 
delay between two channels can create transients or remove them. Such an 
interchange requires, however, a finite change in one or more delays. There 
exists therefore a small neighborhood of each delay for which no 
interchange occurs. [] 

Remarks. (1) Here we encounter for the first time the importance 
of the relative lengths of delays for the qualitative behavior of a system of 
BDEs. More examples will occur in Section 6. 

(2) An explicit treatment of transients in linear systems is given in 
AM. 

Clearly, conservativity in the linear case, p = r, is equivalent to the 
invertibility of 45, or the reversibility of the system of equations. This will 
prove to be the case, with a suitable change of the notion of invertibility, 
for nonlinear systems as well. 
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2.4. Conserva t iv i ty ,  Revers ib i l i ty  and Inver t ib i l i ty  

Defini t ion 2.2. A system of BDEs is reversible  if its time reversal 
also defines a system of BDEs. 

A system is reversible if the value xi(e i )  of each channel xi at its 
earliest appearance, e~, as an argument in the evolution equations (2.1) can 
be deduced from the values of all channels at that time and at later times, 
ei~< t ~< 1. As in the linear case, there is a solvability part of this property 
which depends only on the connective, and another part which depends on 
the ordering of the delays. We shall simplify the discussion, as suggested by 
Theorem 2.4 above, in restricting it to the case of all delays being distinct 
from each other. Interesting phenomena which occur when delays become 
equal and "pass through each other" will be discussed in Section 6. 

Excluding the trivial case of a channel which does not appear in any 
component of the connective f, we denote by x(e) the n vector of earliest 
appearing components, x i (e )=  xi(ei) .  

k e m m a  2.3. In order for a BDE system to be reversible, it is 
necessary that a given component f i  of the connective depend on at most 
one component of x(e). 

Proof. See AM. 

If the condition of the lemma holds, one can write the BDE (2.1) at 
t = l  as 

x~(j)(1) = f~( j ) (x j (1  - Oj), x~(1 - tolj).k)), j =  1 ..... n (2.15) 

where k r j and a ( j )  designates the unique component of f in which the 
earliest appearance of channel j occurs. 

To write the reversed system, we realign first each equation in (2.15) at 
t = 0, 

x~(;)(1 - ej) = f~(j~(xj(O),  x~(1 - e j -  t~j) .k))  (2.16) 

If the connective f satisfies the solvability condition to be determined 
momentarily, one can write, componentwise, 

xj(O ) = ( f  - l )j(x~(;~( a - e j ) ,  XK(1 -- tj.k ) ) (2.17) 

Here ( f -  1); is the j t h  component of the inverse f -  ~ of f, and 1 - tj~ are the 
appropriate "backward delays" or "anticipations." 

k e m m a  2.4. Given that only one x;(e;)  appears in each ~ ,  j =  n(i), 
= a 1 it is necessary for the system to be reversible that xj appear l inearly  

inf , .  
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ProoL Fix all other delayed values x k ( t -  tik), k C j, and consider a 
change in xj(ej). Reversibility implies that xi(1) has to change also as a 
result. Let 

ge(t) = xi(t) + xj(t - Oj) (2.18a) 

and 

Then 

gi(1 ) = x~(1 ) + xj(ej) (2.18b) 

gi(  t ) = f i + x j (  t - -  tit ) (2.19) 

The point is that xj in f i  has to cancel by addition. �9 

De f in i t i on  2.3. A system of BDEs is invertible if each component 
of the connective, f , ,  contains exactly one component xj(ej), j = 7r(i), of the 
vector of earliest appearances of the channels, and if XJ appears linearly 
inf i .  

T h e o r e m  2.6. Definitions 2.1, 2.2 and 2.3 are all three equivalent. 

Proof. See AM. 

Consider next a first-order system of BDEs, not necessarily linear, 

x i ( t ) = ~ c ~ x j ( t - t o ) + g i ( x f ( t - t ~ j , ) ) ,  l<~i<~n, (2.20) 
J 

where gi contains only channels j '  for which cis = 0. The generalized charac- 
teristic polynomial (GCP) of this system, for 1.c.d. {tij: c~r  =q,  is the 
characteristic polynomial Q(z) given by (2.10) of the linear system obtained 
by setting g i - 0 ,  i =  1,..., n. For systems with rational delays in their linear 
part, we can give the following provisional definition of partial linearity. 

Definition 2.4. System (2.20) is partially linear if •Q ~> 2. 

Remark. The reason for not including in the definition the trivial 
case OQ = 1 will become clear in the next section, where the definition will 
be extended to irrational delays as well. 

T h e o r e m  2.6. A partially linear system of BDEs is conservative in 
a neighborhood (2 of a vector of rational delays D = {to } iff (2.14) holds 
for the degree of its GCP, defined for that D. 

Proof. See AM. 

The behavior of linear and partially linear systems is studied in the 
next section. 
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3. C O N S E R V A T I V E  BDEs A N D  A P E R I O D I C  S O L U T I O N S  

3.1. The Delay Lattice 

Let A be the closure of the n 2 vector of delays D = {t~j} under the 
addition of real numbers, i.e., 

A={~kotu,  t~eD, k~eN } (3.1) 

The dimension 6 of A is the number of elements in a basis over the non- 
negative integers. The delay lattice F is the lattice over the integers 
generated by the basis obtained in this way. (18) 

The delay lattice is useful in calculating the jump function, 
J /  B " [ 0 , 1 ]  ~ N, introduced in Section2.1. Here we shall consider 
specifically the number of jumps J(k) in a unit interval [k, k + 1) for the 
solution corresponding to given initial data, J(k; x I~0,11). 

Assume for simplicity that there is a single jump at t o in the initial 
data. Then all of the jumps in the solution will occur at translates of t o by 
integral numbers of delays; in other words, the jumps will be on a subset of 
to + F. Another way of saying this is that the domain of influence of a jump 
at t o is the translate of F by t o. 

The number of translates, i.e., of elements of F, less than a given time 
T is O(T ~) and the growth of the number of translates per unit interval is 
O(T ~- 1). The fact that no connective can actually realize all possible jumps 
suggests that this is not a sharp estimate. To improve upon it requires, 
however, a hypothesis on the propagation of jumps by the connective. 

3.2. Aper iodic  Solut ions of Conservat ive BDEs 

The classification of the previous section provides us with a set of 
hypotheses which will facilitate the computation of J(k), to within sharp 
bounds. The case of linear conservative systems is crucial in this com- 
putation. 

In Section 2.4 we found that nonlinear systems with rational delays 
have a generalized characteristic polynomial (GCP) which characterizes a 
conservative linear system whose jumps are a subset of the jumps of the 
full, nonlinear system. In the case of partially linear systems, the charac- 
teristic polynomial of the linear part, i.e., the GCP, is nonconstant. We 
know that, for a conservative system, there is at least one way to assign the 
earliest appearance xj(ej) of each channel j to each component f i  of the con- 
nective, i = or(j), and that xj appears linearly in f,.. In fact, to each distinct 
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assignment of earliest appearances, a = ~z 1, there corresponds a different 
nonconstant term, or monomial, in the GCP. 

The number of nonconstant terms is the number of arguments in the 
connective of the equivalent scalar equation. As each argument appears 
linearly in it, one can assign the largest delay to either one of them, without 
affecting the equation's, and hence the system's, reversibility. The largest 
delay in this equation is associated with the monomial of maximal degree, 
r, which for a conservative system with rational delays equals p. 

In this section we are interested mostly in irrational delays. It is 
necessary therefore to give a more general definition of the GCP. Let the 
linear part of system (2.20) be written 

x,(t) +~, c~x/t- t~) = 0 (3 .2 )  
J 

We associate with it a matrix 

A(2) = (60.+ co)~"~) (3.3a) 

D e f i n i t i o n  3.1. The GCP of system (2.20) is 

Q(2) = det A()~) (3.3b) 

Remark. If all the delays are rational, Eq. (3.3) reduces to the 
previous definition with 2 =  z q and q=l.c.d.{ta}. 

The formal expression (3.3) serves to identify an equivalence class of 
systems of BDEs which are reversible iff Q(2) has a constant term. In this 
section and Section 4 only, the term GCP is used to designate (3.3b). 

Our study of asymptotic properties of solutions of BDEs allows us to 
neglect transient behavior altogether, hence all of the information provided 
by characteristic polynomials can be found in the study of higher-order 
scalar linear equations. The delay lattice dimension 6 for such equations is 
the number of rationally independent delays. We show that for 6 > 1 it is 
possible to give a lower bound for the jump function J(k) which increases 
in time. Hence, the solutions to these scalar equations cannot be periodic 
or quasiperiodic. 

T h e o r e m  3.1. Consider the linear scalar equation 

x ( t ) = x ( t -  1) V x ( t - 0 2 )  V . . .  V x( t-O~) (3.4) 

where 0 < 0~ < --" < 02 < 01 = 1 are rationally independent and c5 ~> 2. All 
solutions, except x(t)=-O, are aperiodic and have complexity which 
increases with time. 
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Proos The argument will be carried through for the case 6 = 2. We 
consider the scalar, second-order BDE 

x ( t )  : x ( t  - 1) v x ( t  - o)  (3.5) 

with 0 irrational and a single jump in the initial data at 1 - 0 < to < 1. 

The delay lattice of (3.5) is shown in Fig. 1. The 1 axis is shown as the 
y abscissa, the 0 axis as the z ordinate. Solid circles indicate where jumps 
actually occur in the solution, and constitute its jump set. 

The solid line in the figure can be written as y + zO = t; it has slope 
- 0  -1 and represents an isochron, i.e., the set of points in the diagram 
which corresponds to the time t. In the lattice F itself only one point can lie 
on an isochron. This is the main advantage of this reduced representation 
of the set A in (3.1). The calculation of the jump function J(k) is equivalent 
to counting the number of solid circles which lie between the two isochrons 
t = k  and t = k  + l. 
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Fig. l. The delay lattice for Eq. (3.5). 0 ,  jump occurs; �9 jump does not occur. See text for 
details. 
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The two dashed lines in the figure are drawn through the pairs of lat- 
tice points (2 k, 0), (0, 2k0) for k = 1 and k = 3, respectively. The number of 
jumps occurring before t = 1 + 30 can be estimated from above by the num- 
ber of jumps in the lattice triangle with the dashed line for k = 3 as its base; 
it can be estimated from below by the jumps in the triangle corresponding 
to k =  1. These two numbers can be computed explicitly in the case at 
hand. 

The computation proceeds by noticing the self-similarity in the pattern 
of jumps. The lowest-level pattern is given by the small triangles of 
adjacent jumps (shaded in the figure). The next level is given by the 
triangle with a dotted line as its base, passing through the point (22 - 1, 0), 
(0, (22-  1)0). It is easy to show by induction that self-similarity persists to 
all levels (compare also Wolfram, ~6/ Fig. 29, where the self-similarity is 
spatial rather than temporal). As a result the number of j u m p s  j (  k ) beneath 
a "dashed" line indexed by k is j ( k ) =  3~+ 2. 

If J(t)  is the total number of jumps in (3.5) before time t, one can find 
kl,  k2 such that the corresponding "dashed" lines are entirely below and 
above the isochron y + zO = t. Thus, by self-similarity, 

3~1 +n + 2 ~< Y(2nt) ~< 3 k2+n + 2 (3.6) 

which gives immediately 

J ( t )  = O ( / 1 ~  (3.7a) 

The growth of the jump function J( t )  itself is accordingly 

J(t)  = O(t 1~ (3.7b) 

Since log2 3 -  1-~0.6 > 0, the number of jumps per unit time grows, 
and one can thus say that the solution of (3.5) grows in complexity. This 
precludes in particular any kind of periodicity or quasiperiodicity. The 
trivial solution x ( t ) - 0  is the only one which does not exhibit growth in 
complexity. The jump set, and hence the growth of J(k) ,  is exactly the same 
when f ( p ,  q) = p V q = p �9 q is replaced by f =  p A q = 1 | p G q in (3.5); 
the corresponding trivial solution is x( t )  - 1. 

So far, we have addressed only the case when there is a single jump in 
the initial data, but the proof is valid for any data, by an application of the 
approximation theorem which will be discussed in the following section. 
For scalar linear BDEs (3.4) with 6 >~ 3 incommensurable delays it can be 
shown by a transparent generalization of the above that 

J ( t )  = O ( t  l~ + 1) _ 1 ) (3.8) 

This completes the proof of the theorem. �9 
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3.3. Par t ia l l y  L inear  BDEs 

Rotating Fig. ! by -3~ /4 ,  transforming solid circles into ones and 
open circles into zeros yields Fig. 2. 

Pascal's triangles modulo a prime were introduced by Lucas/19/ and 
have been widely studied since. A closely related example will shed some 
light on the significance of the growth rate of the integral jump function 
J(k), as the dimension of a self-similar, fractal set. (2~ 23~ 

Consider the unit cube [0, 1] in ~ dimensions. Divide this into the 2 ~ 
dyadic subcubes and "remove" the interior of the subcube farthest from the 
origin. Repeating this process ad infinitum yields a fractal, generalized Can- 
tor set with Hausdorff dimension log2(3 + 1). It is a simple transformation 
of the "Sierpinski gasket" (Mandelbrot~22~; see also Willson, ~241 for linear 
cellular automata). 

We can extend now Theorem 3.1 to nonlinear systems via the GCP 
(3.3). Given a nonlinear and possibly dissipative BDE system (2.1), define 
its index v to be the number of terms in its GCP. Factoring out the lowest 
power of 2 in Q(2), one obtains the "characteristic polynomial" of a rever- 
sible system. This formal sum of powers of 2 is the same as the G CP  iff the 
lowest power of 2 present in Q(2) is 2 ~ = 1. 

We are ready now to give the final definition of partial linearity, 
including the case of irrational delays. 

Def in i t i on  3.2. A system of BDEs (2.20) is partially linear if the 
index of its GCP is high enough, v/> 3. 

From the discussion at the beginning of Section 3.2 it is clear that the 
asymptotic behavior of a partially linear system contains the solutions of a 
linear conservative system with characteristic polynomial as above, having 

1 

1 1 

/ 1  1 0 0 0 I i ~  I I 0 0 I 
0 I 0 1 0 

I I I I I I 1 1 
�9 �9 �9 �9 �9 �9 �9 �9 g 

Fig. 2. The delay lattice for Eq. (3.5) as Pascal's triangle (rood 2). 
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v ~> 3. By Theorem 3.1, this asymptotically embedded system has aperiodic 
solutions iff sufficiently many of the delays corrresponding to the 
asymptotically present channels are rationally unrelated. We summarize 
these results in a theorem. 

T h e o r e m  3.2. Partially linear systems of BDEs have aperiodic 
solutions of asymptotically increasing complexity if the channels of the 
embedded linear system contain 6 rationally independent delays, with 
6 > 2 .  

Remarks. The trivial, asymptotically constant solutions xj(t)=0 or 
xk(t) = 1 for t > T are also present. For  aperiodic solutions, with 6 >/v - 1, 
the asymptotic dimension of the jump set is larger than or equal to log2 v. 

The fact that partial linearity, as defined, only gives a sufficient con- 
dition for aperiodicity, and that log 2 v, for c5 ~> v - 1, is only a lower bound 
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Fig. 3. Delay lattice for Eq. (3.9). Jumps which occur are solid, the others are blank. 



Periodic and Aperiodic Solutions of BDEs 143 

for the fractal dimension of the asymptotic jump set can be seen from the 
following example. Consider the third-order scalar BDE 

x( t )=  I x ( t -  1) V x ( t -O) ]  ,~ s  r) (3.9) 

with 0, r and r/0 irrational, and a single jump in the initial data at t 0, 
0 <  1 - 0 <  1 - T <  t o <  1. 

The delay lattice F of this BDE has lattice dimension 6 = 3. Its jump 
set is shown in Fig. 3, as solid circles. The axes j and k correspond to the 
delays 1 and 0, respectively, while i corresponds to ~. 

The jump set in the (j, k) plane indicates self-similar behavior with 
fractal dimension log2 3, as in Fig. 1. But the GCP of (3.9) is identically l, 
so that v = l .  

4. A P P R O X I M A T I O N  R E S U L T S  

4.1. The  Ma in  A p p r o x i m a t i o n  T h e o r e m  

In Section 2.1, a metric was introduced into the phase space 
X=Bn[0 ,  1] by Eq. (2.3). Theorem2.1 stated that the operator Y/, 
induced by Eqs.(2.1), (2.2) on X, was continuous in this metric. 
Theorem 2.2 extended this continuity to the dependence on delays, 
~ : X x  [0, 1] ~2. 

The purpose of this section is to study the dependence on delays in the 
large, for solutions of (2.1) on R + = { t: t/> 0 }. For this study we introduce 
two norms on the solutions of (2.1). In the scalar case, x: ~ + ~  B, these 
are 

IlxllT=-r x(t) dt (4.la) 

where the integration is in the sense of real-valued functions, and 

]lx[I co = lira Ilxl] r (4.1b) 
T ~ o O  

The limit in (4.1b) always exists for Boolean-valued x(t). The metric 
induced by (4.1) is clearly (cf. also BDE I) 

with 
d~,~(x, y) = IIx() ~ y (  )11 T,~ 

Ilx(') V y ( ' ) l l r = ~  Ix(t)-y(t)] dt 

(4.2a,b) 

(4.2c) 

as in (2.3), where we had T =  1. 

g22/4t/1-2-10 
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Consider a sequence of vectors of rational delays 0 (m)~-- (O~m),..., O~ rn)) 
converging to an arbitrary vector of delays 0 (~176 = (0~~ 01~176 where the 
delays 0~ ~176 ..... 0~ ~176 are all distinct, and 0~ ~176 = 1, say. We denote by x (m) and 
x (~176 the associated solutions on N+, which coincide on [0, 1]. The scalar, 
second-order BDE, / = 2 ,  is discussed here for simplicity, but the 
generalization to an n x n  system, with l<<.n 2, is merely a matter of 
notation. 

Theorem 2.2 stated that dz(x (m), x (~176 ~ 0 as 0 (m) -* 0 (~176 The identical 
argument implies that dr(x  (~), x (~176 --, 0 for finite, fixed T. 

Let O~ m) = 0~ ~176 = 1 and O(ff ,~176 =Om, oo for simplicity, with 0oo irrational, 
and let x(m)= x (~~ on E0, 1 ]. For sufficiently small gm = [Om- 0oo[, the sup- 
port of x (m) V x (~176 in [0, T], T >  2, is contained in a small neighborhood 
of the translates of supp{x ('~) V x (~176 restricted to [1, 2] }. More precisely, 

Em( T) =- dT(X (m), X (~176 ~ emK( T) (4.3a) 

where K =  K ( T ; f ,  0oo) is an unknown, but continuous function of T for 
T <  co and for any given BDE defined by the connective f and the delay 
0oo. 

We can show that 

K ( T ) = O ( T  ~+~) (4.3b) 

for some c~ > 0 (see the proofs of Theorems 2.1 and 3.1). Indeed, the error 
growth due to increase in the jump function is O(T~). The dependence on 
the displacement of a jump, on the other hand, is given by 

I( to + kOm) - (to + kOoo )l <~ kern 

and k is bounded by T/Ooo +o(1),  proving (4.3b). Combining (4.3a) and 
(4.3b) yields 

Era(T) ~< O(T ~+ tqm 1) (4.4) 

where Om=Pm/q m is in reduced form, gm=O(q~nl), and qm is taken to 
increase monotonically as 0m--* 00o (see Appendix B of AM). 

Hence, for prescribed accuracy Em(T ) ~ tl, one obtains from (4.4) 

T =  O(q~ (1+ ~)) (4.5) 

In other words, the approximation x(m)( t )=x(t ;pm/qm) to X(~176 
x(t; 0o0) retains its accuracy O(q) for longer and longer times as Om = 
Pm/qm --~ 0oo" Furthermore, T can be chosen to grow more slowly than (4.5), 
in such a way that Em(T ) -+0. 
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Fig. 5. Jump function J(t) of Eq. (3.5) for 0 < 0 < 1 .  (a) 0 = l / ~ / ~ ;  (b) 0 =  (, , /5--1)/2; 
(c) 0 = 1/,,/2; and (d) 0 = ~2/10. Notice increased intermittency as 0 increases from 0 to 1. 
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Specifically, let Tm = T(qm) grow asymptotically like 

Tm= O(q~e(~+ 1)) (4.6a) 

where P is a fixed positive integer, P >~ 2. Then, by (4.4), 

Em(Tm) = O(qm 1 + l/, ~ (4.6b) 

This argument is easily extended to prove the following. 

Theorem 4.1 (main approximation theorem). All solutions to 
systems of BDEs can be approximated by the periodic solutions of a 
nearby system with rational delays only. The accuracy of the 
approximation E m is given by (4.6b) up to a time Tm given by (4.6a). 

The results of a sequence of approximations by continued fractions 
(see AM, Section 4.1 and Appendix B) are shown in Fig. 4a for Eq. (3.5) 
and 0 equal to the golden ratio. Figure 4b shows the exact solution over a 
longer time interval. 

4.2. Sel f -S imi lar i ty  and In termi t tency  of Aperiodic 
Solut ions 

Figure 5 displays the jump function J(t) for the same equation, a 
single jump in the initial data, and various irrational values of the delay 0. 
The self-similarity of J(t) apparent in Figs. 5a-d (solid line) is striking. The 
second striking fact about Fig. 5, and less expected, is the increase in inter- 
mittency as 0 increases from 0 to 1. Figure 6 shows the actual solution for 
the last value of 0 (Fig. 5d), 0 = ~2/10. 

To explain the variation in behavior of Ji(t; O) as 0 changes, recall that 
by Eq. (3.7), for all irrational values of 0, 

J(t; 0 ) ~ K ( 0 )  t ~~ (4.7) 

Figures 5a-d show that K is a strong function of 0, being largest when 0 is 
nearly 0 and smallest as 0 approaches 1. 

The constant K in Eq. (4.7) characterizes the mean asymptotic growth 
behavior of the jump function J(t). Figure 5 also shows that, while K 
decreases with 0, the relative variability of J(t) increases with 0. This is 
evidenced by the fact that the ratio of the distance between the upper and 
the lower "envelopes" of J(t) (dash-dotted lines in the figure) to the 
ordinate of the "mean" (dashed) increases from panel to panel in the figure. 
Since the mean growth is smaller for larger 0, this increasing ratio is related 
to the very intermittent character of solutions for high 0 (Fig. 6). 
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The function .Jf(t; O)/Ko t~ for the connective f of Eq. (3.5), c~= 
log2 3 - 1, 0 = l /x /2  (compare Fig. 5c) and Ko = 1.814 is plotted in Fig. 7a. 
It is clear that this function oscillates, with no apparent decrease in the 
amplitude of the oscillation. 

The same function is plotted in Fig. 7b with log2 t, rather than t itself, 
on the abscissa. This plot shows that J( t ) / t  ~ is asymptotically log2 t 
periodic in the coarsest pattern, but with an increase of fine structure from 
coarse period to coarse period. This increase is to be expected from the 
knowledge of the self-similar, fractal character of the jump lattice. 

Figure 7b suggests that we consider g ( t ) =  J(2 t) which, in the limit, is 
periodic in the usual sense. For  this function, 

lim 1 fl ' t~  o~ t g(s) ds const. ~- 2 

and this limit suggests in turn a reasonable quantification for the mean 
behavior of J(t). We shall thus define 

K(O) = l im a J(2 ' )  2 ~ ds (4.8a) 
1 

Mp(O) = lim [J(2") 2 ~' - K(O)] p ds, p ~> 2 (4.8b) 
t ~ o O  1 

for all aperiodic solutions of growing complexity. 

T h e o r e m  4.2. The mean asymptotic behavior J(t)  of the jump 
function J(t; O) for the linear, conservative BDE (3.5) is given by 

J( t )  = K(O) t ~ (4.9) 

where ~ = l o g  2 3 - 1  and K(O) is a monotone decreasing function of 0 
irrational on 0 < 0 < 1. 

Romark.  It can be shown more generally for any system (2.1) of 
BDEs with rationally independent delays 0 = (01,..., 0t), 0 < 01 < "' < 0t = 1 
that Ks(0 ) is a monotone decreasing function function of 1FII_ ~ 0i. 

Proof. See AM. 

Returning to Fig. 5, we can now state the exact definition of the 
dashed "mean growth" and the dash-dotted "envelope" lines: they are the 
plots of J(t; O) = K(O) t ~ and of J_+ M1/2(0) t ~, respectively. 

We measure solution intermittency for BDEs by the relative variability 
of their jump functions. Thus, given the scaling of (4.8), relative variability, 
and therewith intermittency, is defined as 

p(O) = Mz(O)/K(O) (4.10) 
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Figure 8 shows a plot of p(O). The general increase of p with 0 for 
0.4 < 0 < 0.9 is obvious. It is also clear from the peaks superimposed on this 
general growth of p(O) that the situation is considerably more complicated 
than a monotone increase with 0. 

The difficulty, trivially resolved for K(O), is created here by the effect of 
resonances, due to the presence of rational delays in the interval. For 0 
rational, ~ = 0 and p(O) is of the indeterminate form 0/0. 

The points in Fig. 8, however, were obtained by using an efficient BDE 
solver (see Appendix A of AM) which, when given a rational delay, 
produces the jump function corresponding to an irrational delay close by. 
This results in the peaks appearing in the figure. The width of each peak is 
related to the strength of the resonance caused by the given rational delay. 
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Fig. 8. Relative variability p = M2/K for Eq. (3.5) as a function of delay 0. Notice general 
increase with 0 and resonant peaks near simple rational values of 0. 
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The height of the peaks, on the other hand, is more difficult to inter- 
pret. Owing to the extreme narrowness of the highest portion of the peaks, 
finite sampling in 0 can miss the "top" of the peak by a significant amount. 
By the same token, the level of the entire computed curve might be lower 
than in reality by the amount indicated by the very smallest peaks visible, 
so that these could be actually spurious. 

Even so, further numerical investigations suggest that a considerable 
amount of the fine structure apparent in Fig. 8 is real. This structure 
indicates that p(O), and hence intermittency, increases drastically for 
irrational delays well approximated by rationals. 

The qualitative explanation of this fact is simple. We recall from Sec- 
tion 4.1 that over some fraction of the period of the solution generated by 
the rational delay, this solution approximates well that generated by the 
irrational delay. The jumps of the irrational solution which do not corres- 
pond to jumps in the rational one are due to a failure of the former jumps 
to coincide and cancel, as their rational cousins do. Each pair of such non- 
canceling but very close jumps in the irrational solution propagate 
independently and undisturbed, the two series of progeny jumps shadowing 
each other closely (see also BDE I, Section 4). 

This process repeats on smaller and smaller scales as cancellations 
with higher integer coefficients occur in the rational solution. That is, after 
longer and longer times, more lattice points lie on the same rational 
isochron in Fig. 1. It appears that the simpler the approximating rational 
delay, i.e., the lower its denominator, the faster the process happens. This 
provides a plausible explanation for the width and height of the peaks in 
Fig. 8 apparently centered at certain simple rational delays (0= 1/2, 1/3, 
1/4, 1/5). 

4.3. Resonances and Sca l ing  

We turn now to a more quantitative analysis of partially linear BDEs. 
In certain exceptional cases, when resonance phenomena occur, there are 
no aperiodic solutions for any delays t, or the growth of solutions in time is 
slower than otherwise expected. 

De f in i t i on  4.1. Given delays 0 = (01,..., 0,~,) r of the homogeneous 
linear scalar BDE (3.4) associated with the partially linear system (2.20), a 
resonance is defined by an inner product relation 

aT0 = ~ akO k = 0 (4.11a) 
1 
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tinued fraction approximants with q =  55, 89, and 144 (panels 9a, 9b, and 9c, respectively). 
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where a~ are integers and 

is the order of the resonance. 

l a l -  lak[ >~2 (4.11b) 
1 

The delays 0 are given by linear combinations of the delays t = 
(tl,... , IN) T of the original system, 

O = L t  (4.12) 

where 0 and t = (tt) are column vectors, ( . ) r  is the transpose of a vector 
('), L is a matrix with nonnegative, integer entries, the single index l 
corresponds to a linear ordering of the pairs (i, j)  in (2.20) and N<~ n 2 is 
the actual number of distinct delays appearing in the system. The rank d of 
L gives the maximum number of components of 0 which can be rationally 
independent, regardless of the values of t. 

If d~< 1, then no aperiodic solutions can exist. Since L depends only on 
the connective f, we call this first type of degeneracy sys tem resonance. 
More generally, the dimension 6 of the delay lattice of the scalar BDE, i.e., 
the number of its rationally independent delays, is at most d, and the 
highest dimension of its jump set is given by ~ + 1  = l o g z m i n { 6 +  1, v}. 
Thus, when d =  v - 1  we say that L has maximal  rank, and any value of 
d <  v - 1  corresponds to system resonance. 

A second type of resonance occurs when rational relations exist among 
the delays {tij} of the original system. We shall call it delay resonance. For 
such relations to affect the associated scalar BDE, they must occur among 
the delays present in the partially linear channels. 

Suppose 0 = Lt has resonance a. Then 

aTO = a r ( L t )  = ( a ~ L ) t  = 0 (4.13) 

and t has resonance b = LTa, since L has integer elements. This is a genuine 
resonance, according to (4.11b), only if ILral ~> 2. But LTa = 0 iff a is not in 
the range of L. Hence delay resonance b in (2.20) will have caused the 
observed resonance a in (3.4) only if a has a nontrivial component in the 
range of L. Otherwise the resonance a has to come from system resonance, 
i.e., from d being less than maximal. 

We summarize these results in the following theorem. 

T h e o r e m  4.3. If the rank of L is maximal and no delay resonance 
occurs, the asymptotic growth of complexity in solutions of Eq. (3.4), and 
hence of system (3.2), will be maximal, with scaling exponent of the jump 
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function c~=log2v-1 .  On the other hand, if d<v-1 ,  then a~< 
logz(d+ 1 ) -  1. The effect of a resonance b among delays t of (2.20) on c~ 
depends on the actual presence of the delays in (3.2) and on the com- 
ponents of b lying in the range of Lr. 

Remarks. (1) Computationally, delays 0 with a resonance of high 
order ]a] will behave like nonresonant delays for a very long time. 

(2) Over any finite time, solutions to BDEs are easier to compute 
than solutions of ordinary differential or smooth functional differential 
equations. But the asymptotic behavior of a dynamical system, whether 
continuous or discrete, requires an amount of computation dictated essen- 
tially by its complexity (see Appendix A of AM), rather than by the local 
rate of error growth. 

A simple example illustrating the two types of resonance discussed is 
given in AM, Eqs. (4.17), (4.18). 

It can be shown, using Dirichlet's theorem, (25) that all sufficiently good 
rational approximations admit all of the resonances of the delays they 
approximate. This means that for a reasonable selection of the 
approximating delays, we will observe any resonance of the exact solution 
x/~176 the approximating solution x (k). 

The length of time needed in order to observe a resonance of the exact 
solution in the approximation depends on the approximating delays and is 
estimated in Section 4.3 of AM. We merely state here that, when a 
resonance occurs, the scaling exponent c~ of the jump function decreases. 
Hence a sequence of resonances will manifest itself in the solution as suc- 
cessive decreases in the rate of growth of the jump function. These 
decreases occur in sequence, according to the order of the resonance. As a 
result, the actual time at which the growth associated with a given 
resonance becomes apparent depends on the previously manifested, lower- 
order resonances. 

One last question concerning resonances and approximation refers to 
determining, for given delays 0 (~ whether sufficiently close approximants 
0 (k~ [cf. (4.4)] admit spurious resonances. This problem can be treated for 
almost all (in the sense of Lebesgue), but not all, choices of delays. 

We refer to delays 0 as being of type (C, v) (in analogy with 
Arnold, (26) Section 24, although the meaning of resonance here is different) 

if raT0] ~> C larl-v (4.14) 

for all resonances a r, with C > 0 and v > 0 fixed. For v > m + 1, almost all 
delays 0 are (C, v) for some C > 0 .  If 0 is of type (C, v), then it admits no 
resonances, but the converse is not true, as shown by the example of 
Liouville numbers (see Appendix B of AM). 



158 Ghil and Mul lhaupt  

If 0/~) = 0  is (C, v) and an approximant O(k)-p(k)/q satisfies 

Ok - <ql--+l/m' l ~ i ~ m  

then the condition 

ql + l/,, > tarlV+ 1/c 

or 

q> (laTLV+l/c)m/(m+l) 

is sufficient in order to avoid spurious resonances of order lal or below. 
Notice also that if the system delays t are (C, v) and L has maximal rank, 
then the scalar delays 0 are (C', v) for some C' > 0 which depends on L. 

5. PERIODIC S O L U T I O N S  

5.1. The Period Function 

Systems of BDEs which have only rational delays, and therefore only 
periodic solutions (Section 2.2), are dense in the space of all systems of 
BDEs. On the other hand, for almost all linear and partially linear systems 
only the trivial solutions are periodic, so that almost all solutions are 
aperiodic (Sections 3 and 4.3). Furthermore, the approximation results of 
Section4.1 indicate that systems with aperiodic solutions are well 
approximated, up to a certain time, by systems with slightly perturbed 
delays and periodic solutions. 

This raises a number of questions about the dependence of maximum 
period length ~ on the connective f and on the delays t. For linear or par- 
tially linear systems, rcf(t)--+ +oo as some delays tij become irrational. For 
systems which are not partially linear, and which are not asymptotically 
linear (cf. Sections 3.3 and 6), we suspect that the function rt(t) is bounded 
or that the solutions are quasiperiodic. 

Theorem 5.1. The period function ~(t) is a lower semicontinuous 
function of the delays t for any BDE (2.1), in any t interval in which it is 
bounded away from zero. 

Proof. See AM. 

Remark. Theorem 5.1 can be weakened so that it applies to all t 
intervals, by stating that the function r t*( t )=r t ( t )+ l / r t ( t )  is lower 
semicontinuous, without further qualification. 



Periodic and Aperiodic Solutions of BDEs 159 

By the definition of semicontinuity, 

~ ( t ) = s u p  inf ~(t') (5.1) 
e > 0  lit t ' l l < e  

In fact, our approximation results provide more information than just 
(5.1). A semicontinuous function in general can have jump discontinuities. 
These can only occur in the period function if the solution corresponding 
to the delay vector t (~ at which the jump in zc(t) occurs actually vanishes, 
or is identically equal to 1. 

Hence, it is not hard to prove (see AM): 

T h e o r e m  5.2. In a neighborhood of a delay vector t (~ in which the 
period function ~(t) is bounded away from infinity and from zero, ~(t) is 
continuous. 

Various special cases of discontinuities are discussed in AM. 

5.2. Upper  Bounds for  Period Lengths 

For simplicity, we consider a scalar second-order BDE [not 
necessarily (3.5)] with 01 = 1 and 0 < 02 < 1. Let 02 = 0 = p/q with p and q 
relatively prime. Decompose 2 q into all possible sums of positive integers, 
and let M(q) be the supremum over all decompositions of the least com- 
mon multiples (1.c.m.) of the summands in each decomposition. If the BDE 
has k = 1 or k = 2 constant solutions, M(q) will be defined with respect to 
2 q - k  rather than 2 q. 

Theorem 5.3. 
~(p/q) <~ M(q)/q. (5.2) 

Remark. In the general case of a system with t t=  Pl/ql, q = 1.c.m. {ql) 
in (5.2). 

ProoL This is essentially a refinement of the proof of Theorem 2.3. 
Let r(s) be a q-tuple of O's and l's defined by 

r(s) = [x(s), x(s + 1/q),..., x(s + ( q -  1)/q)] (5.3) 

The initial data for the BDE with 0 = p/q can be represented as a one- 
parameter family of such q-tuples, where s E [0, l/q) is the parameter. 

This representation of the initial data induces a representation of the 
solutions, as 

x(t) = x ( [ t ]  + s) = z(n + s) (5.4) 

822/41/1 2-11 
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where I t ]  = n is the greatest integer less than or equal to t, and s is the 
fractional part of t. The crucial observation is that 

~(s + ~ ) = ~(~(s)) (5.5a) 

where ~b does not depend on s. Hence each tuple r(s) propagates in the 
solution of the BDE independently of the other tuples. 

Continuation of the solution for this rational 0 corresponds in fact to 
matching the first q - 1  components of each q-tuple with the last q - 1  
components of its predecessor: 

r(s + 1/q) = OS(v(s)) (5.5b) 

Then ~b = ~q and ~ is a representation of Y~/q [compare Eq. (2.5) and 
Lemma 2.1 ]. 

Each q-tuple x(t)=z(s), [t]  =0,  in the initial data generates a 
periodic subsolution according to Eq. (5.5). The length l(r) of the period is 
determined from the first repetition of the tuple in the subsolution, e.g., 
r(s + r/q) = r(s), for some smallest integer r. 

The subsolutions can at most exhaust the entire phase space, which 
has 2 q - k  points. Let 2 u - k - -  Z i  ni be a particular decomposition into 
arbitrary positive integers, and the initial data contain q-tuples r i =  z(si) 
which lead to words of lengths n~ = l(~). The solution in this worst case has 
a period not longer than 1.c.m.{ni}/q. This proves the theorem. �9 

In general M(q) is much larger than 2q-k.  For linear equations, 
however, one can show that ~(q) ~< (2 u - k)/q (AM, Theorem 5.4). The case 
with rational delays is reducible to a well known chapter in the theory of 
shift registers (~6~ and is also analogous to certain classes of cellular 
automata. (24.27) 

A better understanding of period length in the nonlinear case requires 
the study of dissipative systems, to which we turn presently. 

6. D I S S I P A T I V E  BDEs 

Throughout much of the last three sections, the study of jump 
propagation by a system's linear part was the foundation of our theory. In 
order to discuss the effects of dissipativity and nonlinearity, a change in 
perspective is required. In the present section, we will develop some alter- 
native techniques and apply them to the wide class of dissipative BDEs. 
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6.1. Normal Forms of Connectives 

It simplifies the exposi t ion to restrict our  a t tent ion to the single, 
n th-order  scalar B D E  

X ( I )  = f ( x ( t  - -  0 1 )  . . . . .  X ( t  - -  On)  ) (6.1) 

where 0 < 0 n < . . .  < 01 = 1, and f is any function f :  B n ~  B. Since we do 
not  impose  further restriction on f / w e  shall need certain wel l -known facts 
f rom Boolean algebra in order  to represent  its s t ructure in simplest, stan- 
dard  terms. (ls'28) 

Let 

ui = x( t  - Oi), i = 1,..., n 

and u = x(t) .  
We shall write in the present  section pq for p A q and p + q for p v q. 

With this notat ion,  c o m m o n  in switching and a u t o m a t a  theory,  

p + q = p @ q @ p q  

where p |  = p  V q is addi t ion over  22, as before. Then f ( u )  of (6.1) can 
be writ ten in the form (see A M  for details) 

f ( v ) =  1 k = r e ( v ) +  I 

where v is a d u m m y  variable ranging over  2 I. Equat ion  (6.2) is called the 
disjunctive normal f o r m  ( D N F )  o f f (u ) ,  with fi = 1 - p. By de Morgan ' s  rule 
we also have the conjunctive normal f o r m  (CNF) ,  

f ( v )  = 0 k = re(v)  + l 

We write p ~ q ("p implies q") to indicate that  q must  be true, q = 1, 
whenever  p is: 

(p ~ q) = (/~ + q) 

Note  t h a t f  ~ g iff g is a p roduc t  of factors of  (6.3), and g ~ f i f f  g is a sum 
of terms of (6.2). For  this reason, a p roduc t  of factors of (6.3) is called an 
implicate of f and a sum of terms of (6.2) is called an implicant o f f .  
Trivially, f ~ 1 and 0 ~ f .  
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Given these conventions, there are two equivalent logical descriptions 
of (6.1): 

x ( t ) ~  01, ~ --, x(t)  

x( t )  --, @2, or c~2 --* x( t)  

x(t)  -~ ~r, Os --" X(t) 

(6.4a,b) 

where @1,.--, @r are all the implicates of x(t)  according to f and (6.3), and 
~bl,... , ~b~ are all the implicants of x( t )  according to f and (6.2). A sim- 
plification is possible iff some of the implicates or implicants in (6.4) may 
be safely ignored. At this stage, the particular nature of Boolean delay 
equations may provide additional information, since the expressions for the 
implicates and implicants involve the same variable, x(t ') ,  at different 
moments in its time evolution, t' = t - 0;, j = 1,..., n. 

6.2. Asymptotic Simplification of BDEs 

A good setting for these questions is to consider an irredundant subset 
of implications (6.4) as part of a grammar G generated by the connective f 
of (6.1). This grammar governs a formal language whose words make up 
the solutions of (6.1); see for details AM (Section 6.2) and Hopcroft and 
Ullman (29) (Chapter 2). In the sequel, we refer for brevity to the original set 
of implications, aj, without creating undue confusion, rather than to the 
grammar G. 

Since the original set ~q of implications is irredundant, the removal of 
any on of them would alter the connective. However, if for some time t o the 
situation arises that an implication /? of ~f can be derived from ~q- {/3} 
augmented by/3 restricted to times less than to, then the implication/3 has 
become redundant after some time in the evolution of the equation. From 
Sections 2.3 and 2.4 we suspect that such a situation might arise after all 
transients have died out. 

This means that after sufficient time, the evolution of the solution to 
the original BDE is governed by a BDE with the implication/3 absent from 
its connective, but which still contains other implications of N. Since N is 
irredundant, this new connective is not the same connective, i.e., the 
asymptotic behavior reduces to a simpler system. Removal of implications 
corresponds to elementary modifications of the appropriate normal form, 
hence a connective exists which governs this asymptotic evolution. 

Another interesting situation arises when for some integer com- 
bination of delays ~, the variable x ( t - ~ z )  is implied by x( t )  and 2 ( t -  ~) is 
implied by ~(t), i.e., x ( t ) ~  x ( t -  ~) and x ( t -  ~)--* x(t).  This states simply 
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that a period can be determined by the technique we have sketched. There 
is a converse to this statement, namely, that any determination of the 
period by other means yields two useful implications. 

The following theorems illustrate the two situations above, the 
asymptotic and the periodic one. 

Theorem 6.1. Solutions to Eq. (6.1), where f carries implications 
cc x( t )  --, x ( t -  0~) and /3: x( t )  ~ 2 ( t -  0~), solve eventually an equation 
which does not contain/3. 

Proof. We want to show that /3 is redundant for t > to, where to is 
the maximum length of transients. The following diagram contains the 
proof, using ( )* to indicate contraposition, and ( ) to indicate restric- 
tion to times t ' <  to, 

x(t)  ~ , ~ ( t - o p )  

~k 1 I (~k)* 
x ( t - k O ~ )  ~- ~ 2 ( t - k O ~ - O ~ )  

(6.5) 

Starting from x(t),  we apply c~ k times, so that t - kO~ < t o. This permits the 
application of/3_, i.e.,/3 restricted to times preceding t o. Applying the con- 
trapositive of ~ k times, we arrive at x ( t ) ~  2 ( t - 0 ~ ) ,  which is /3 at time 
t > t  o . Thus /3 is preserved by c~ and /3 , becoming redundant after 
t >  t o. [] 

Remark.  Any such theorem can only apply vacuously to conservative 
BDEs, which are reversible and do not have transients. 

Theorem 6.1 can be applied immediately to 

x( t )  = x ( t -  01) 2 ( t -  02) (6.6) 

where either 0 ~< 01 ~< 02 = 1 or 0 ~< 0 2 ~ 01 = 1. In this case, 

~: x ( f )  --, x ( t -  01) 

/3: x ( t )  --, ~ ( t  - 02) 

and solutions of (6.6) must be determined asymptotically by 

x ( t ) =  x ( t - 0 1 )  (6.7) 

Further details on solutions of (6.6), (6.7), especially as 02 "passes through" 
01, can be found in AM, Section 6.2. 

Corollary 6.1. Let f i n  (6.1) carry implications c c x ( t ) ~ x ( t - O ~ )  
and /3: x ( t ) - - ,  P, where P is a function of delayed values of x, 
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u i ( t ) = x ( t - O i ) ,  and assume that if (al,..., ak) and ( b l , . . .  , bk) are sets of 
arguments for P with a i ~ b i ,  l<~i<~k, then P(al, . . . ,ak)--.P(bl, . . . ,bk).  It 
follows that the solutions of (6.1) solve eventually an equation which does 
not contain/3. 

Proof. The property of P in the corollary characterizes the largest 
class of Boolean functions for which a diagram similar to (6.5), namely, 

x(t) ~ , P(u(t)) 

x(t -  kO~) ~ , P ( u ( t -  kO~)) 

commutes in the appropriate way. �9 

Remark. The class of P to which the corollary applies contains all 
simple products and simple sums, e.g., P(al ..... ak)=ala2 ... a~ or P = a l  + 
a2 + "'" + ak, and in fact represents a large class of connectives. 

We see that interesting and rather complete information about 
asymptotic reduction of dissipative system behavior can be obtained from 
the formal representation of connectives by a grammar G of implications. 
We shall apply now this point of view to the other general situation con- 
sidered, that of periodic solutions. 

6.3. Periodici ty and Structural  Stabi l i ty  

In Theorem 6.1 and Corollary 6.1 we saw that all solutions of a BDE 
can be eventually periodic, and that the common periodic segment of the 
solutions satisfies a "reduced" or simplified equation. Next, a situation will 
be illustrated in which the common period can be determined, but no 
reduction exists. 

Theorem 6.2, The equation 

~2(t) = x ( t -  01) x ( t -  02) (6.8) 

has eventually periodic solutions of period ~ = 01 + 02 for all values of the 
delays 01 and 02. 

Remark. The notation of (6.8) is obvious shorthand, using De 
Morgan's rule [compare Eqs. (6.2), (6.3)]. 

Proof. Any equality p = q  is equivalent to two implications, p ~ q 
and q --* p, or p --* q and ,5 --* ~. Thus (6.8) is equivalent to 

2(t) --* x(t  - 01) x ( t -  02) (6.9a) 
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and 
x( t )  ~ 2(t  - 01) + 2(t  - 02) (6.9b) 

Applying (6.9a) to each term on the right-hand side of (6.9b), and putting 
the right-hand side of the result into its CNF, yields 

x( t )  --* x ( t  - 01 - 02) (6.10) 

A similar manipulation of the DNF completes the proof. [] 

Remarks .  (1) Implicit in the proof is also an upper bound on the 
length o f  the transient, 2(01, 02), namely, 2~< 01 + 02. Indeed, this is greater 
than or equal to any of the delays needed for the arguments above. With 
arbitrary initial data on 0 ~< t ~ 1, solutions will be periodic for t >~ 1 + 2. 

(2) Notice that in this case all solutions are periodic, independently 
of whether 01 and 02 are rational or not. 

C o r o l l a r y  6.2. All solutions of 

~ ( t ) =  f i  x ( t - O ~ )  (6.11 

Proof. See AM. [] 

Equations (6.8), (6.11) give an example of BDEs for which, according 
to Theorem 5.2, the period function ~z(0) is bounded away from 0 and from 
o% and hence continuous in the delays e. As we shall see, these equations 
are also structurally stable. 

More generally, in proceeding to a discussion of structural stability, we 
are interested in small deformations of BDEs leading to small deformations 
in their solutions. A BDE can be changed in two ways: by changing the 
connective f ,  and by changing the delays 0. Changes in f have to be 
measured in a discrete topology, and thus cannot be "small." The only 
small changes possible, measurable in any equivalent metric on Nn, are 
those in 0. Hence it suffices for structural stability to consider small pertur- 
bations of the delays. 

are eventually periodic with period 

~(0) = ~ Ok for n even (6.12a 
1 

n 

= 2 ~ 0h for n odd (6.12b 
1 

The length of transients, 2(0), is bounded by 

2(0) ~< re(0) (6.13) 
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The concept of structural stability for BDEs will be patterned after 
that for differentiable dynamical systems (DDS(26'3~ Two systems on a 
topological space X are said to be topologically orbitally equivalent if there 
exists a homeomorphism h: X--, X mapping orbit curves from one system 
to those of the other. A system is structurally stable if there is a 
neighborhood about it in the space of all systems, 5~(X), such that all 
systems in the neighborhood are topologically orbitally equivalent. 

A necessary condition for structural stability of a BDE, like for a 
DDS, is that it have only properties which hold for a dense set of like 
systems. In the case of BDEs, such a property is that of having only even- 
tually periodic solutions. Further reflection, inspired by Theorem 6.2 and 
Corollary 6.2, also shows that a dense set of BDEs has compact forward 
orbits, i.e., finite-length transients leading into periodic orbits. 

These two topological properties reveal that a structurally stable 
system must have finite-length transients and eventually periodic orbits. In 
fact, there must be a bound on both the transient length and the period 
length over some neighborhood of the system. The remainder of this sec- 
tion is dedicated to a converse of this observation. 

Suppose 2(0) and ~(0) are nonnegative continuous functions of the 
delays on some neighborhood U(0o) of 0o, for some equation (6.1). Here 
2(0) is the upper bound for transients and ~(0) is the longest period, i.e., 
the smallest number which is a period of all solutions of (6.1) with delays 0. 

Assume furthermore w.l.o.g, that 0o is irrational, or that it satisfies a 
nonresonance condition of a certain order, so that q=l.c.d.{0o} is large 
compared to 2o+~o-=2(0o)+~(0o).  Then one can choose a smaller 
neighborhood of 00, V(0o) ~ U(0o), such that the common denominators of 
rational delays in V are all large compared to 2o + ~o- This is clearly 
possible since there are only finitely many points in U satisfying resonances 
of an order lower than 0o. 

It follows that the ordering in time of the delay lattice F of (6.1) for 
times t~< T =  sup0~ v{,~(0) + re(0)} is independent of 0 for 0 e V, i.e., given 
any two points (mkOk) and (nkOk) in F, the inequality •k rnkOk < ~k nkOk, 
say, is preserved for any 0 =  (0h) in V, provided ZknkOk<~ T. Hence an 
assignment of values (or jumps) to F for 0 0 is preserved in lattice coor- 
dinates for any other 0e  V. The change in 0 is reflected in the actual 
solution by a slight displacement of the jumps, but no collision between 
jumps, and subsequent large change in the solution, can occur. 

We have thus constructed a homeomorphism from the BDE (6.1) with 
delays 0o to that with delays 0 e V: the map on F is the identity, and hence 
continuous and invertible in the discrete topology on F, while the map 
from F to the solutions is continuous by Theorem 2.2 and obviously inver- 
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tible. Hence the composition of these two maps is continuous and inver- 
tible. This gives our structural stability theorem. 

T h e o r e m  6.3. Necessary and sufficient conditions for a BDE (6.1) 
with delays 0o to be structurally stable are that, for some neighborhood U 
of 0o in Rn: (1)all transients be bounded over U, (2)all periods be boun- 
ded over U, 

sup {2(0) + ~(0)} ~< M <  oo (6.14) 
0 ~ U  

R e m a r k s .  (1) This result holds for arbitrary systems of BDEs as 
well. All ideas for the proof are the same. [Compare also Eqs. (7) and 
(25a), in BDE I, with 2(0)=0.]  

(2) It would be nice to have a purely algebraic characterization of 
structurally stable systems, in the same way that partial linearity provided 
a large class of BDEs with aperiodic solutions. 

It is clear from the proof of Theorem 6.3 that classes of topological 
orbital equivalence for structurally stable BDEs are separated by resonan- 
ces among delays, and that such resonances require sufficiently long 
periods or transients. Considering constant solutions as being periodic of 
period zero, it also follows that Hopf-type bifurcation in BDEs has to be 
related to delays "passing through each other." 

6.4. Asympto t ic  Stabi l i ty  and Quasiper iodic i ty  

In this section, we shall address two remaining types of behavior for 
BDEs: asymptotically stable constant solutions, and quasiperiodic 
solutions. Furthermore, the asymptotic behavior of Eq. (3.9) (Fig. 3) will 
also be discussed. 

Consider first the equation 

x ( t )  = x ( t  - O) x ( t  - 1 ) (6.15) 

with 0 < 0 <  1 irrational. Aside from the constant solution x l l ) ( t ) - 1 ,  all 
solutions are eventually equal to the other constant solution x(~ 
The asymp to t i c  s tabi l i ty  of x(~ - 0 and instability of x(l~(t)  ~ 1 follow by 
a study of the Liapunov function 

ft 
t +  I 

L(t ;  x ( t ;  0))  = x ( s )  ds (6.16a) 

Differentiating 

ft 
t + 1 

L ( t )  = x ( s  - O) x ( s  - 1 ) ds 
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immediately gives 
d L  

= x ( t )  x ( t  - 0 + 1 ) - x ( t )  

= x ( t ) [ x ( t -  0 + 1 ) -  1] (6.16b) 

and hence dL /d t  <<, O. Equality holds only when x ( t ) =  l almost everywhere. 

T h e o r e m  6.4. Given rationally unrelated delays 0 = (Ok), the BDE 

x ( t )  = fiI x ( t  - Ok) (6.17a) 
1 

has x ( t ) =  0 as an asymptotically stable solution, while for the BDE 

y ( t )  = ~ y ( t -  Ok) (6.17b) 
1 

y ( t ) -  1 is asymptotically stable. 

Proof .  See AM. 

It is true that for smaller and smaller e =  S~ ( 1 - x ( t ) )  dt, the transient 
length in (6.15) can be larger and larger. Furthermore, for a given e suf- 
ficiently small, one can find a sequence of irrational delays 0n such that the 
transient length increases without bound. 

Theorem 6.3 implies therefore that Eq. (6.15) is not structurally stable. 
In fact, ~(0) = 0 for all irrational 0, while for each rational 0 = p /q  periodic 
solutions of period q 1 exist. Thus rr(0) is not bounded away from zero, 
and Theorem 5.1 does not apply either. 

We turn next to quasiperiodic behavior. A system of BDEs with 
quasiperiodic solutions is 

x l ( t )  = X l ( t -  011) 2 3 ( t -  013) 

x2( t )  = x 2 ( t -  022) x3(t - 023) (6.18) 

X3(/) = x l (  t - 031) x2( t - 032) x3( t - 033) 

where the delays {0~} are taken to be rationally independent. 
For initial data with x 3 ( t ) - 0 ,  several types of solution are possible: 

(1) Periodic solutions of periods 011 or 022 obtain when Xz(t  ) o r  Xl ( t  ) is 
constant in the initial data, respectively [-see Eq. (6.7)]; (2)quasiperiodic 
solutions obtain when Xl and x2 have both nonconstant initial data. The 
presence of any resonance between 011 and 022 of course produces a 
periodic solution with period equal to 1.c.m.{011,022}. 
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In view of the freedom involved in the choice of the resonance, 
periodic solutions of (6.18) with arbitrarily long period exist. According to 
Theorem 6.3, quasiperiodic solutions are therefore not structurally stable, 
in agreement with the situation for smooth dynamical systems (DDS). 

For [IX3]] = ~01 x3(t)dr CO, the question of solution behavior becomes 
more involved. We start by noticing that x3(r)= 0 implies x3(r +//033 ) = 0, 
and likewise xj(z)= 0 implies x3(r + nO3j)= 0 for j =  1, 2. Thus X3(/) "tends 
to zero," which tends to reduce system solutions to the previous situation. 
But for any x3(z)r  0, the behavior of xj(r + 0j3 ), j =  1, 2, will be disturbed, 
unless xj(z+Oj3-Ojj)=O already. Clearly, given suitable inequalities 
among the delays, one can choose initial data for x~, x2, and x3 such that 
IIx31l s o  and the relations above are satisfied, recovering quasiperiodic 
solutions, i.e., x3(t) becomes eventually zero without affecting the behavior 
of xl(t) and x2(t). 

Any point 0 ~< r < 1 at which x3(r) = 1 and the compatibility relations 
above are not satisfied generates a point at which xl or x2 become zero, 
and these points are repeated with period 0~1 or 022 respectively. The rates 
at which the support of x I and x2 in their respective periods is reduced 
depend on the rates at which various "slices" of the delay lattice F generate 
times dense on the line. In particular, ~t+ 0j, Xj(s ) ds could go to zero faster 
for j = 1 or j = 2 than for j = 3. 

Notice in fact that the Liapunov function of (6.18), 

ft 
t +  1 3 

L(t; x(t; 0)) = ~ x/s) ds 
1 

yields dL/dt <~ O, so that the trivial solution x~ - x 2 --- x3 - 0 is orbitally 
stable for any 0. Asymptotic stability, however, would depend on the 
delays, as indicated by an obvious generalization of Theorem 6.4. 

We turn now to the case of Eq. (3.9). The normal forms of the right- 
hand side are (p + q)(b + gl)?= pgl? + fq~ , with p= x ( t - 1 ) ,  q= x ( t - O )  
and r = x(t - ~). Both the numerical evidence of Fig. 3 and the discussion of 
Eq. (6.6) according to Theorem 6.1 suggest that the asymptotic behavior of 
solutions to (3.9) should be governed by its linear part, i.e., Eq. (3.5). 

In fact, if the delays 0 and r are rational, the eventual periodicity 
yields the implications necessary to apply Theorem6.1. Hence for all 
rational delays, the periods are those given by Eq. (3.5). These periods, 
however, increase with q =  1.c.d.{0, ~}, according to Theorem 5.4 of AM. 

It follows, by Theorem 6.3, that Eq. (3.9) cannot be structurally stable, 
and we cannot conclude from asymptotic linearity for all rational delays 
that it is asymptotically linear, independently of delay values. Still, we sus- 
pect by another type of argument for asymptotic simplification, currently 
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under study, that (3.5) eventually governs solutions of (3.9), independently 
of delays. 

More generally, we see that asymptotic linearity, like asymptotic 
stability, tends to be metrically pervasive in BDEs, and structurally 
unstable. It is possible that solutions of perpetually decreasing complexity, 
like those of perpetually increasing complexity of Section 3, occur and can 
play an interesting role in the theory, as well as in applications. 

7. C O N C L U D I N G  R E M A R K S  

We have studied a class of dynamical systems with discrete variables 
and continuous time dependence. This mathematical study was motivated 
by the desire to create an appropriate framework for the qualitative 
investigation of complex biological and physical phenomena exhibiting 
threshold behavior, as well as distinct interaction times among the depen- 
dent quantities. In the present section, we shall recapitulate our main 
results, and outline some possible extensions and applications. 

The most striking fact about BDEs is the existence of aperiodic 
solutions with increasing complexity, discovered numerically in BDE I, and 
proven here in Section 3. Equally surprising is the fact that these occur for 
linear and partially linear BDEs. Thus linearity over Z2 has interesting con- 
sequences. An intuitive way of explaining this phenomenon is the com- 
petition of conservativity, or its equivalents reversibility in time or 
absence of transients, with saturation. 

The next striking fact is that aperiodic solutions, which occur for 
rationally unrelated delays, can be approximated for increasingly long 
times by periodic solutions which obtain when all delays are rational (Sec- 
tion 4). Thus periodic and aperiodic solutions cannot be distinguished on 
the basis of experiments or numerical computations performed in finite 
time. In Section 5, and in Section 5.3 of AM, it was shown that period 
length increases exponentially with q =  1~At, where At is the maximum 
resolution in time. 

Finally, in Section 6 we showed that asymptotic simplification, as well 
~s asymptotic complexification, of solution behavior in BDEs is possible. 
Structural stability of a BDE was defined, and it was shown that it is 
equivalent to a bound on both period length and transient length for 
nearby BDEs. It follows that quasiperiodic solutions, as well as aperiodic 
solutions, which obtain for irrational delays, are metrically pervavise, but 
topologically vanishing for BDEs. The relation between a bifurcation 
theory for these equations, and the resonances between delays analyzed in 
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Section 4 in connection with solution intermittency, was also discussed. The 
study of intermittency and resonances in BDEs offers interesting connec- 
tions with number theory (see Fig. 8 and Appendix B of AM). 

Where do we go from here? The reduction results of Section 6 suggest 
that, given an arbitrary connective on many Boolean variables, it should be 
possible in general to obtain a much simpler connective, on considerably 
fewer variables, which governs the behavior of solutions for large times. 
This corresponds to an explicit, simple description of the global limit set for 
solutions, an elusive objective for (ODEs or PDEs), ~32-34) but apparently 
feasible for BDEs. 

Next, one can and should envisage the analysis of infinitely many 
Boolean variables, by analogy with PDEs and infinite cellular automata. 
The classification of what we could call now ordinary BDEs into conser- 
vative and dissipative (Section 2) suggests that partial BDEs of different 
types exist. 

We notice here in passing that the discussion in the main text and in 
this section had been restricted to autonomous systems. This was done 
merely for the sake of brevity and convenience. Forcing, constant or 
variable in time and space, can be easily introduced and should play an 
important role in applications. 

Among these, we shall only mention the applications which were the 
immediate motivation of BDE I, taken from theoretical climate 
dynamics. (35) The complexity of the climatic system on various time and 
space scales has led investigators to consider climate models incorporating 
two or three components of the system, and some of their possible interac- 
tions, at one time. Among the components are the atmosphere, biosphere, 
cryosphere, hydrosphere, lithosphere, and mantle. Their possible interac- 
tions include the ice-albedo feedback, CO2 chemistry, the precipitation- 
temperature feedback, bedrock response to ice load, sea-ice effects on deep- 
water formation and many others (Ghil and Childress, ~36) Part IV; 
Saltzmann (37~). 

Classical approaches to modeling all these interactions, by systems of 
ODEs or PDEs, have great difficulty to master the climatic system's com- 
plexity with any thoroughness. At the same time, so-called conceptual 
models are used by paleoclimatologists to explain some of their obser- 
vational findings. These models, while trying to be more comprehensive 
than the classical ones, cannot apply rigorous criteria in what is basically 
an a posteriori justification of an a priori supposition suggested by the data. 

In this context, and in many other disciplines, such as various 
branches of the biosciences (38/ and social sciences, precise mathematical 
reasoning is only starting to be applied to complex phenomena which are 
still incompletely measured and understood. For such disciplines, BDEs 
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could become a systematic way of exploring formal conceptual models of 
the phenomena of interest. 

Specific examples are currently being worked out in climate 
dynamics, (39-41) as well as in clinical biology. (42) It is relatively easy, in 
these examples and subsequent ones we plan to study, to determine from 
direct observations of the natural system, or from proxy data on it, the 
relative magnitude of the most important characteristic interaction times. 
Classical, ODE or PDE models require, on the other hand, the exact or at 
least approximate values of many other parameters, which might or might 
not affect qualitative system behavior. Therefore, a preliminary 
investigation using BDEs can be very useful in preparing the ground for 
and facilitating the task of more detailed analyses using ODEs, PDEs, and 
large numerical models. 

A C K N O W L E D G M E N T S  

It is a pleasure to thank S. Childress, D. Dee, R. Krishnamurti, J. 
Lebowitz, O. Martin, C. Nicolis, N. Packard, P. Pestiaux, T. Spencer, R. 
Thomas, and S. Wolfram for discussions or encouragement, and H. 
McKean and J. Percus for their comments on earlier versions of the 
manuscript. This work was supported by the National Science Foundation 
under grants No. ATM-8214754 and ATM-8514731. 

REFERENCES 

1. F. Jacob and J. Monod, J. Molec. Biol. 3:318 (1961). 
2. M. Sugita, J. Theor. Biol. 4:179 (1963). 
3. S. A. Kauffman, J. Theor. Biol. 22:437 (1969). 
4. J. von Neumann, Theory of Self-Reproducing Automata, edited and completed by A. W. 

Burks (University of Illinois, Urbana, 1966). 
5. S. Ulam, Ann. Rev. Biophys. Bioeng. 1:277 (1972). 
6. S. Wolfram, Rev. Mod. Phys. 55:583 (1983). 
7. V. S. ~ernjavskii, Trudy Moskov. Mat. Obs(. 9:425 (1960); Engl. transl. Am. Math. Transl. 

(Series 2) 39:207 (1964). 
8. E. Fredkin and T. Toffoli, Int. J. Theor. Phys. 21:219 (1982). 
9. R. Thomas, J. Theor. Biol. 42:563 (1973). 

10. R. Thomas, J. Theor. Biol. 73:631 (1978). 
11. C. Nicolis, Q. J. R. Meteorol. Soc. 108:707 (1982). 
12. M. Ghil and J. Tavantzis, SIAM J. Appl. Math. 43:1019 (1983). 
13. D. Dee and M. Ghil, SIAM J. Appl. Math. 44:111 (1984). 
14. A. P. Mullhaupt, Boolean Delay Equations: A Class of Semidiscrete Dynamical Systems, 

Ph.D. thesis, New York University, New York (1984). 
15. B. H. Arnold, Logic and Boolean Algebra (Prentice-Hall, Englewood Cliffs, New Jersey, 

1962). 
16. S. W. Golomb, Shift Register Sequences (Holden-Day, San Francisco, 1967). 



Periodic and Aperiodic Solutions of BDEs 173 

17. R. B. Pearson, J. Comput. Phys. 49:478 (1983). 
18. G. Birkhoff and S. MacLane, A Survey of Modern Algebra, 3rded. (Macmillan, 

New York, 1965). 
19. E. Lucas, ThOorie des nombres (Gauthier-Villars, Paris, 1891), p. 418. 
20. F. Hausdorff, Math. Ann. 79:157 (1919). 
21. L. F. Richardson, Proc. R. Soc. London Ser. A 110:709 (1926). 
22. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982). 
23. U. Frisch (with G. Parisi), in Turbulence and Predictability in Geophysical Fluid Dynamics 

and Climate Dynamics, M. Ghil, R. Benzi, and G. Parisi, eds. (North-Holland, Amster- 
dam, 1984), p. 84. 

24. S. J. Willson, Discrete Appl. Math. 8:91 (1984). 
25. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed. 

(Clarendon, Oxford, 1979). 
26. V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations 

(Springer, New York, 1983). 
27. O. Martin, A. M. Odlyzko, and S. Wolfram, preprint (1983). 
28. Z. Kohavi, Switching and Finite Automata Theory, 2nd ed. (McGraw-Hill, New York, 

1978). 
29. L E. Hopcroft and J. D. Ullman, Formal Languages and their Relation to Automata 

(Addison-Wesley, Reading, Massachusetts, 1969). 
30. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifur- 

cations of Vector Fields (Springer, New York, 1983). 
31. S. E. Newhouse, in Dynamical Systems, J. Moser, ed. (Birkh~iuser, Boston, 1980), Sec- 

tion 4. 
32. C. Foias and R. T6mam, in Nonlinear Dynamics and Turbulence, G. I. Barenblatt, G. 

Iooss, and D. D. Joseph, eds. (Pitman, Boston, 1983), p. 139. 
33. C. E. Leith, J. Atmos. Sci. 37:958 (1980). 
34. E. N. Lorenz, J. Atmos. Sci. 37:1685 (1980). 
35. M. Ghil, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate 

Dynamics, M. GhiI, R. Benzi, and G. Parisi, eds. (North-Holland, Amsterdam, 1984), 
p. 347. 

36. M. Ghil and S. Childress, Topic's in Geophysical Fluid Dynamics (Springer, New York, in 
press, 1985). 

37. B. Saltzman, Adv. Geophys. 25:173 (1983). 
38. M. R. Guevara, L. Glass, M. C. Mackey, and A. Shirer, 1EEE Trans. Syst. Man Cybern. 

13:790 (1983). 
39. M. Ghil, Terra Cognita 4:336 (1984). 
40. M. Ghil, A. Mullhaupt, and P. Pestiaux, preprint. 
41. A. P. Mullhaupt, in Mathematical Problems from the Physics of Fluids, G. Gallavotti et al., 

eds., to appear. 
42. P. Pestiaux, Les Fonctions de Walsh Permettent une Quantification Pr6cise des Entr6es et 

Sorties Associ6es ~. des Syst~mes Complexes Mod61is6s par des l~quations Bool~ennes, 
Th+se Annexe, Universit6 Catholique de Louvain, Louvain-la-Neuve, Belgium (1984). 


